SFC 研究所所長 殿

SFC 研究所ラボラトリ年次活動実績報告書

ラボ名称	科学技術コ	科学技術コミュニケーションラボ						
ラボ代表者	氏名	村井・純		所属	環境情報学部			
ラボ設置期間		2016年4月1日	~	2022年3月31日		6	年間	

構成メンバー(提出時点)						
氏名	所属・職位	役割				
村井 純	環境情報学部教授	全体統括、研究発案				
桑原 武夫	総合政策学部教授	全体統括、オピニオンバンク				
飯盛 義徳	総合政策学部教授	科学技術政策提言				
新保 史生	総合政策学部教授	ソーシャブル・ロボット				
古谷 知之	総合政策学部教授	ドローン前提社会の共創				
一ノ瀬 友博	環境情報学部教授	科学技術政策提言				
加藤 文俊	環境情報学部教授	オピニオンバンク				
大木 聖子	環境情報学部准教授	災害科学コミュニケーション				
高汐 一紀	環境情報学部教授	ソーシャブル・ロボット				
蟹江 憲史	大学院政策・メディア研究科教授	フュチャーアース				
鳴川 肇	大学院政策・メディア研究科准教授	フュチャーアース				
佐藤 雅明	大学院政策・メディア研究科特任准教授	次世代モビリティ				
南政樹	大学院政策・メディア研究科特任講師	ドローン前提社会の共創				
神武 直彦	システムデザイン・マネジメント研究科准教授	社会技術システム				
鈴木 万希枝	東京工科大学情報学環准教授・SFC研究所上席所員	生活者調査				

年次活動実績報告

研究活動報告 (設置申請書,継続申請書の研究活動計画と対比するように記載してください。)

- 1. 日本科学未来館と共同で『生活者モニタリング調査』を設計、実施し、その分析を行った。本調査は、生活者の科学技術や社会課題に関する意識や態度、ミュージアムに対する認知度・利用行動、および、イメージ等を調査し、科学コミュニケーション活動の可視化、モニタリングのための手法開発を目的としたものである。本調査は定点観測調査として、今後毎年行われる予定である。インターネットを用いたオンライン調査により、全国の10~64歳男女/8000サンプルを対象とした。
- 2. 日本科学未来館と共同で「研究者調査」を設計、実施し、その分析を行った。本調査は、科学技術の研究者の情報発信・対話・協働活動参画状況把握と課題理解し、日本科学未来館に対する期待や課題理解を調査し、研究開発推進、共創・社会課題解決に有効なアプローチを探究することを目的としたものである。ンターネットを用いたオンライン調査により、大学、公的研究所、民間・企業研究所、企業、科学館・博物館等に所属する研究者/429サンプルを対象とした。
- 3. 日本科学未来館と共同で、未来館調査データの活用に向けた分析システム開発を設計し、委託業務としてそのプロトタイプの作成を行った。このシステムは、日本科学未来館が蓄積してきたデータ、および、今後収集するデータを有効に組み合わせて利用することをめざすものである。2020度より本格的な開発・運用を行う予定である。

			又、者作物、メティア露出等)
1.	鈴木万希枝,	2019,	先端科学技術エンゲージメントを醸成する要因の探索(P0711), 日本社会心理学会第60回大 先端科学技術エンゲージメントの涵養における情報行動の役割,文化情報学会誌,文化情報学
云. 2. 会	鈴木万希枝, (査読中).	2020,	先端科学技術エンゲージメントの涵養における情報行動の役割、文化情報学会誌、文化情報学